Mark scheme – Energy, Power and Resistance EMF and PD

Question		on	Answer/Indicative content	Marks	Guidance	
1			C	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The correct key was C . It was only the candidates in the upper quartile who managed to get the correct answer using the expression $Ve = \frac{1}{2}mv^2$ (learning outcome 4.2.2e). Halving the accelerating voltage V will decrease the speed of the electrons by a factor of $\sqrt{2}$.	
			Total	1		
2			с	1		
			Total	1		
3			D	1		
			Total	1		
4			D	1		
			Total	1		
5			D	1		
			Total	1		
6			В	1		
			Total	1		
7			В	1		
			Total	1		
8			С	1		
			Total	1		
9			С	1		

		Total	1	
10		A	1	
		Total	1	
11		С	1	
		Total	1	
12		В	1	
		Total	1	
		(V _R =) 2.7 (V) or (current =) 0.018 (A)	C1	Note the mark can be scored on circuit diagram
13		$(ratio = \frac{0.018 \times 1.8}{0.018 \times 2.7})$		Note values of powers are: 0.0324 W and 0.0486 W
		ratio = 0.67	A1	Allow 2/3; Not 0.66 (rounding error)
		Total	2	
14		С	1	
		Total	1	
15		(1 C =) (1) A s	C1	Allow alternative methods
		(1 J =) (1) kg m s⁻² × m or (1) N = (1) kg m s⁻²	C1	
				Note this mark is for clear substitution and working
		$_{1}$ kg ms ⁻² × m kgm ² s ⁻²	M1	Examiner's Comments
		$V = \frac{1}{As} = \frac{1}{As}$ kg m ² A ⁻¹ s ⁻³	۵٥	Some candidates were not clear on what
			70	was meant by base units. Most realised that the quantity of electric charge is measured in As. Weaker candidates had difficulty deriving work done.
		Total	3	
16	а	(kinetic energy =) 1.6 × 10 ⁻¹⁹ × 300	C1	
		$eV = \frac{1}{2}mv^2$	C1	
		$v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 300}{9.11 \times 10^{-31}}}$	C1	Note 1.05 × 10 ¹⁴ scores 2 marks; omitted square rooting
				Examiner's Comments
		speed = 1.03 × 10 ⁷ (m s ⁻¹)	A0	Good candidates clearly showed the steps to determine the velocity. Weaker candidates found this question difficult. Clear substitution of numbers is required for these marks to be awarded.

	b		$\lambda = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.0 \times 10^7}$	C1	Allow ECF from the previous question part
					Allow 2 marks for 7.1 × 10 ⁻¹¹ , $v = 1.03 \times 10^7$ used
					Examiner's Comments
			λ = 7.3 × 10 ⁻¹¹ (m)	B1	This part was generally well answered although some candidates confused terms in the equation or could not deal with the powers of ten. Some candidates were confused and used $E=hc/\lambda$.
			Total	5	
17			$eV = \frac{1}{2}mv^2$ so $v^2 = 2eV/m$ ma = eE so $a = eE/mx = vtd = \frac{1}{2}at^2 = \frac{1}{2}a(x/v)^2d = (eE/2m).x^2.(m/2eV) = Ex^2/4Vx^2 = 4(d/E)V$	B1 B1 B1 B1 B1 A0	four equations are needed and some sensible substitution, etc. shown for the fifth mark
			Total	5	
10	а		<i>E</i> = <i>y</i> -intercept	B1	<i>E</i> must be the subject
18			<i>r</i> = - gradient	B1	<i>R</i> must be the subject Do not accept gradient = - <i>r</i>
	b	i	$\left(R = \frac{5.68}{0.025} =\right) 230 \Omega$	A1	Allow 227
		ii	$\left(\frac{5.68^2}{(c)(i)} \text{ or } 0.025^2 \times (c)(i) \text{ or } 0.025 \times 5.68 = \right) 0.14$	C1	Allow ECF from (c) (i) 0.140 or 0.142 or 0.144
			0.14 × 300 = 42 (J)	A1	Allow 43 (J) (for 0.142 or 0.144)
		iii	$\left(Q = \frac{(c)(ii)}{5.68} \text{ or } 0.025 \times 300 = \right) 7.4 \text{ or } 7.5$	B1	Allow ECF from (c) (ii)
			с	B1	
			Total	7	
19		i	Similarity – same unit (AW)	B1	Allow 'both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge'
				B1	Allow any pair from:
					e.m.f. p.d.
		i	i chemical / other forms to electrical and for p.d., energy is transformed to heat / other forms from electrical		Energy (transformed) to electrical or Energy (transformed) to heat /other forms
					Charges gain energy Charges lose energy

				Work done on charges	Work done by charges]
				Examiner's Con Most candidates were both measu number of candid the same as 'volt benefitted those thoroughly. The r significant number marks for their fla	nments knew that e.m.f. and p.d. ured in volts (V). A small dates thought that ' <i>volt</i> ' wa <i>tage</i> '. This question who taken time to revise modal mark was one, but a er of candidates scored tw awless answers.	a vo
	ii	$n = \frac{9.6 \times 10^{16}}{1.2 \times 10^{-6} \times 6.0 \times 10^{-3}} \text{or} n = 1.3(3) \times 10^{25} \text{ (m}^{-3}\text{)}$ $(l = Anev)$	C1			
	ii	$0.003 = 1.2 \times 10^{-6} \times 1.33 \times 10^{25} \times 1.6 \times 10^{-19} \times v$	C1	Note Any subjec	t for this equation	
	ii	v = 1.2 × 10 ⁻³ (m s ⁻¹)	A1	Allow 1 mark for $\times 10^{16}$ used Examiner's Con Almost all candid equation <i>I</i> = <i>Ane</i> end candidates r density of the cha to be calculated t electrons given a resistor. The maj incorrectly assun when it should ha Examiners award candidates who a 10^5 m s ⁻¹ using t	the incorrect value of n .).6 ≩ ad
		Total	5			
20	i	Electrons behave or travel as waves.	B1			
	i	The rings demonstrate that the electrons are diffracted by individual carbon atoms / spacing between carbon atoms.	B1			
	i	The (de Broglie) wavelength of the electrons is comparable to the 'size' of the carbon atoms or the spacing between carbon atoms.	B1			
	ii	$v^{2} = \frac{1.6 \times 10^{-19} \times 1200}{0.5 \times 9.11 \times 10^{-31}} \text{ or } v = 2.053 \times 10^{7} \text{ (m s}^{-1}\text{)}$ $\lambda = \frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 2.053 \times 10^{7}}$	C1	Correct use of ½	$e mv^2 = eV$	
	ii		C1			
	ii	wavelength = 3.5×10^{-11} (m)				

4.2 Energy, Power and Resistance - EMF and PD $% \left({{{\rm{PD}}} \right)$

		iii	Results published to allow peer review Procedure shared with other scientists to allow replication	B1	
			Total	6	
21		i	$V = \frac{1.1}{6.8 + 1.4 + 1.1} \times 6$ 0. 71 (V)	C1 A1	Allow $I = \frac{6}{(6.8+1.4+1.1)\times 10^3} = 0.00065$ Allow 0.7 Examiner's Comments Candidates who use the potential divider equation invariably gained the correct answer of 0.71 V. Alternatively, some candidates correctly determined the current and then determined the voltmeter reading.
		ii	As temperature of thermistor increases, resistance of thermistor decreases Total resistance of circuit decreases or current increases Greater proportion of p.d. across <u>fixed resistor</u> or p.d. across <u>fixed resistor</u> increase Reading on the voltmeter will increase	B1 B1 M1	Examiner's Comments Candidates were expected to explain how the voltmeter reading would change as the temperature of the thermistor increased. Good answers used a step-by-step approach. Candidates needed to explain how the potential difference of across the fixed resistor would change. It was essential that clearly defined terms were used – often candidates referred to V_1 , R_2 , or p.d. and resistance without indicating explicitly the meaning of V_1 , R_2 , or explaining which p.d. or resistance was being referred to.
			Total	6	
22	а	ï	$\frac{1}{R} = \frac{1}{60} + \frac{1}{60} \text{ or } \frac{1}{R} = \frac{1}{60} + \frac{1}{60} + \frac{1}{60} \text{ or } R = \frac{60}{n} \text{ or } R = \frac{60 \times 60}{60 + 60}$ 30 \Omega + 20 \Omega = 50 \Omega	M1 A1	Examiner's Comments This question was generally answered well although, a number of candidates did not take due care when writing the mathematical expressions. Exemplar 6 4 (a) Fig.4 shows a direct with five identical 600 resistors. The battery has electromotive force (a) Fig.4 shows a direct with five identical 600 resistors. The battery has electromotive force (a) Fig.4 shows a direct with five identical 600 resistors. The battery has electromotive force (b) Fig.4 shows a direct with five identical 600 resistors. The battery has electromotive force (a) Fig.4 shows a direct with five identical 600 resistors. The battery has electromotive force (b) Fig.4 shows a direct with five identical 600 resistors. The battery has electromotive force (c) Fig.4 shows a direct with five identical 600 resistors. The battery has electromotive force (c) Fig.4 shows a direct with five identical force is 500. (c) Fig.4 shows a direct with the total resistance in the circuit is 500. (c) Show that the total resistance in the circuit is 500. (c) Show that the total resistance in the circuit is 500. (c) Show that the total resistance in the circuit is 500. (c) Show that the total resistance in the circuit is 500. (c) Show that the total resistance in the circuit is 500. (c) Show that the total resistance in the circuit is 500. (c) Show that the total resistance in the circuit is 500. (c) Show that the total resistance is in the circuit is 500. (c) Show that the total resistance is 100. (c) Show that the total resistance is counted in the circuit is 500. (c) Show that the total resistance is logically (c) Show that the total resistance is logically

				structured showing the effective resistance of the two combinations of resistors and then clearly showing the adding of the two effective resistances together. This answer gained both marks.
	ii	$\frac{30}{50} \times 9 \text{ or } I = \frac{9}{50} = 0.18 \text{ A}$ 5.4 V	C1 A1	Examiner's Comments For this question, many candidates incorrectly stated that the potential difference was 4.5 V. Other candidates tried determining the current but did not make clear their working. The simplest solution was to use the potential divider relationship.
		$(l = \frac{5.4}{60} =) 0.090 \text{ A}$ (0.09 x 120 =) 11 C or coulomb	C1 A1 B1	 Allow ECF from (ii) Allow 10.8 Note 0.18 C scores two marks provided 0.09 A is seen Note 21.6 C scores one mark (for the correct unit) Examiner's Comments The majority of the candidates gained a mark for the unit of charge on this question. A common incorrect answer was 21.6 C where candidates had used the total current in the circuit rather than the current of 0.09 A in resistor Y. Some candidates did not change the time in minutes to a time in seconds.
	iv	(11 x 5.4 or 0.09 x 5.4 x 120)= 59 or 58 (J)	A1	Note 58(.3) if 10.8 C usedAllow ECF from (ii) and/or (iii)Not 60Examiner's CommentsCandidates who multiplied the charge by the potential difference easily gained the mark in this question. Other candidates who used different methods often made mistakes.
		$I = nAve \text{ or } v \alpha I$	B1	Allow any correct rearrangement of $I = nAve$
b		larger current through Y than Z ORA	B1	Allow <i>l</i> _Y = 0.090 A <u>and</u> <i>l</i> _Z = 0.060 A OR <i>l</i> _Y / <i>l</i> _Z = 1.5 ORA

		drift velocity in Y is 1.5 times drift velocity in Z ORA	B1	Examiner's Comments In this question, many candidates correctly quoted the equation and stated that the mean drift velocity was directly proportional to the current. The majority of the candidates realised that there was a larger current in resistor Y than resistor Z; however, few candidates realised that the current was 1.5 times larger and therefore the mean drift velocity was 1.5 times larger.
		Total	11	
23	i	$Vq = \frac{1}{2} mv^2$ and $\lambda = \frac{h}{mv}$	M1 A1	Allow <i>p</i> for <i>mv</i> Allow <i>e</i> for <i>q</i> in (b)(i) – this is to be treated as a 'slip'
	ï	(% uncertainty in $\lambda^2 =$) 10% 1 (% uncertainty in $\lambda =$) 5% Straight line of best fit passes through all error 2 bars gradient = 1.0 (× 10 ⁻²²) $\frac{\hbar^2}{2mq} =$ gradient 3	C1 A1 B1 C1	Note 10 (%) on answer line will score the C1 mark Ignore POT for this mark; Allow ± 0.20 (× 10 ⁻²²)
		$\frac{(6.63 \times 10^{-34})^2}{2 \times m \times 3.2 \times 10^{-19}} = \text{ gradient}$ m = 6.9 × 10 ⁻²⁷ (kg) (hence about 10 ⁻²⁶ kg)	C1 A1	Possible ECF for incorrect value of gradient Note check for AE (condone rounding error here) and answer must be about 10^{-26} (kg) for any incorrect gradient value for this A1 mark Special case : 1.37×10^{-26} kg scores 3 marks for $q = 1.6 \times 10^{-19}$ C because answer is about 10^{-26} kg
		Total	9	