Mark scheme - Energy, Power and Resistance EMF and PD

	Answer/Indicative content	Marks	Guidance
1	C	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The correct key was C. It was only the candidates in the upper quartile who managed to get the correct answer using the expression $V e=\frac{1}{2} m v^{2}$ (learning outcome 4.2.2e). Halving the accelerating voltage V will decrease the speed of the electrons by a factor of $\sqrt{2}$.
	Total	1	
2	C	1	
	Total	1	
3	D	1	
	Total	1	
4	D	1	
	Total	1	
5	D	1	
	Total	1	
6	B	1	
	Total	1	
7	B	1	
	Total	1	
8	C	1	
	Total	1	
9	C	1	

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Total \& 1 \& \\
\hline 10 \& \& A \& 1 \& \\
\hline \& \& Total \& 1 \& \\
\hline 11 \& \& C \& 1 \& \\
\hline \& \& Total \& 1 \& \\
\hline 12 \& \& B \& 1 \& \\
\hline \& \& Total \& 1 \& \\
\hline 13 \& \& \[
\begin{aligned}
\& \left(V_{R}=\right) 2.7(\mathrm{~V}) \quad \text { or }(\text { current }=) 0.018(\mathrm{~A}) \\
\& \left(\text { ratio }=\frac{0.018 \times 1.8}{0.018 \times 2.7}\right) \\
\& \text { ratio }=0.67
\end{aligned}
\] \& C1
A1 \& \begin{tabular}{l}
Note the mark can be scored on circuit diagram \\
Note values of powers are: 0.0324 W and 0.0486 W \\
Allow 2/3; Not 0.66 (rounding error)
\end{tabular} \\
\hline \& \& Total \& 2 \& \\
\hline 14 \& \& C \& 1 \& \\
\hline \& \& Total \& 1 \& \\
\hline 15 \& \& \begin{tabular}{l}
(1 C =) (1) A s \\
\((1 \mathrm{~J}=)(1) \mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \times \mathrm{m}\) or (1) \(\mathrm{N}=(1) \mathrm{kg} \mathrm{m} \mathrm{s}^{-2}\)
\[
\begin{aligned}
\& V=\frac{\mathrm{kg} \mathrm{~ms}^{-2} \times \mathrm{m}}{\mathrm{As}^{2}}=\frac{\mathrm{kgm}^{2} \mathrm{~s}^{-2}}{\mathrm{As}} \\
\& \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~A}^{-1} \mathrm{~s}^{-3}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
C1 \\
C1 \\
M1 \\
A0
\end{tabular} \& \begin{tabular}{l}
Allow alternative methods \\
Note this mark is for clear substitution and working \\
Examiner's Comments \\
Some candidates were not clear on what was meant by base units. Most realised that the quantity of electric charge is measured in As. Weaker candidates had difficulty deriving work done.
\end{tabular} \\
\hline \& \& Total \& 3 \& \\
\hline 16 \& a \& \begin{tabular}{l}
(kinetic energy \(=\)) \(1.6 \times 10^{-19} \times 300\)
\[
e V=\frac{1}{2} m v^{2}
\]
\[
v=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 300}{9.11 \times 10^{-31}}}
\] \\
speed \(=1.03 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\)
\end{tabular} \& C1
C1
C1

A0 \& | Note 1.05×10^{14} scores 2 marks; omitted square rooting |
| :--- |
| Examiner's Comments |
| Good candidates clearly showed the steps to determine the velocity. Weaker candidates found this question difficult. Clear substitution of numbers is required for these marks to be awarded. |

\hline
\end{tabular}

	b		$\lambda=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 1.0 \times 10^{7}}$$\lambda=7.3 \times 10^{-11}(\mathrm{~m})$	C1 B1	Allow ECF from the previous question part	
					Allow 2 marks for $7.1 \times 10^{-11}, v=1.03 \times 10^{7}$ used Examiner's Comments This part was generally well answered although some candidates confused terms in the equation or could not deal with the powers of ten. Some candidates were confused and used $E=h c / \lambda$.	
			Total	5		
17				$\begin{aligned} & \text { B1 } \\ & \text { A0 } \end{aligned}$	four equations are needed and some sensible substitution, etc. shown for the fifth mark	
			Total	5		
18	a		$\begin{aligned} & E=y \text {-intercept } \\ & r=- \text { gradient } \end{aligned}$	B1 B1	E must be the subject R must be the subject Do not accept gradient $=-r$	
	b	i	$\left(R=\frac{5.68}{0.025}=\right) 230 \Omega$	A1	Allow 227	
		ii	$\begin{aligned} & \left(\frac{5.68^{2}}{(\mathrm{c})(\mathrm{i})} \text { or } 0.025^{2} \times(\mathrm{c})(\mathrm{i}) \text { or } 0.025 \times 5.68=\right) 0.14 \\ & 0.14 \times 300=42(\mathrm{~J}) \end{aligned}$	C1 A1	Allow ECF from (c) (i) 0.140 or 0.142 or 0.144 Allow 43 (J) (for 0.142 or 0.144)	
		iii	$\left(Q=\frac{(\mathrm{c})(\mathrm{ii)}}{5.68} \text { or } 0.025 \times 300=\right) 7.4 \text { or } 7.5$ C	B1 B1	Allow ECF from (c) (ii)	
			Total	7		
19		i	Similarity - same unit (AW) Difference - For e.m.f, energy is transformed from chemical / other forms to electrical and for p.d., energy is transformed to heat / other forms from electrical	B1 B1	Allow 'both defined as energy (transformed) per unit charge' or 'both defined as work done per unit charge	
					Allow any pair from:	
					e.m.f.	p.d.
					Energy (transformed) to electrical	Energy (transformed) from electrical or Energy (transformed) to heat /other forms
					Charges gain energy	Charges lose energy

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Work done on \\
charges
\end{tabular} \& Work done by charges \\
\hline
\end{tabular} \\
Examiner's Comments \\
Most candidates knew that e.m.f. and p.d. were both measured in volts (V). A small number of candidates thought that 'volf' was the same as 'voltage'. This question benefitted those who taken time to revise thoroughly. The modal mark was one, but a significant number of candidates scored two marks for their flawless answers.
\end{tabular} \\
\hline \& ii

ii

ii \& $$
\begin{aligned}
& n=\frac{9.6 \times 10^{16}}{1.2 \times 10^{-6} \times 6.0 \times 10^{-3}} \text { or } n=1.3(3 \ldots) \times 10^{25}\left(\mathrm{~m}^{-3}\right) \\
& (I=\text { Anev }) \\
& 0.003=1.2 \times 10^{-6} \times 1.33 \ldots \times 10^{25} \times 1.6 \times 10^{-19} \times v \\
& v=1.2 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
$$ \& C1

C1

A1 \& | Note Any subject for this equation $\text { Allow } 1 \text { mark for } 1.6(3) \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) ; n=9.6$ $\times 10^{16} \text { used }$ |
| :--- |
| Examiner's Comments |
| Almost all candidates were familiar with the equation $/=$ Anev. However, only the topend candidates realised that the number density of the charge carriers (electrons) had to be calculated from the number of electrons given and the volume of the resistor. The majority of candidates incorrectly assumed n to be $9.6 \times 10^{16} \mathrm{~m}^{-3}$ when it should have been $1.3 \times 10^{25} \mathrm{~m}^{-3}$. Examiners awarded one mark for those candidates who arrived at the answer $1.6 \times$ $10^{5} \mathrm{~m} \mathrm{~s}^{-1}$ using the incorrect value of n. |

\hline \& \& Total \& 5 \&

\hline 20 \& i \& | Electrons behave or travel as waves. |
| :--- |
| The rings demonstrate that the electrons are diffracted by individual carbon atoms / spacing between carbon atoms. |
| The (de Broglie) wavelength of the electrons is comparable to the 'size' of the carbon atoms or the spacing between carbon atoms. | \& | B1 |
| :--- |
| B1 |
| B1 | \&

\hline \& ii \& | $\begin{aligned} & v^{2}=\frac{1.6 \times 10^{-19} \times 1200}{0.5 \times 9.11 \times 10^{-31}} \text { or } \quad v=2.053 . . \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\ & \lambda=\frac{6.63 \times 10^{-34}}{9.11 \times 10^{-31} \times 2.053 \times 10^{7}} \end{aligned}$ |
| :--- |
| wavelength $=3.5 \times 10^{-11}(\mathrm{~m})$ | \& C1

C1 \& Correct use of $1 / 2 m v^{2}=e V$

\hline
\end{tabular}

		iii	Results published to allow peer review Procedure shared with other scientists to allow replication	B1	
			Total	6	
21		i	$\begin{aligned} & V=\frac{1.1}{6.8+1.4+1.1} \times 6 \\ & 0.71(\mathrm{~V}) \end{aligned}$	C1 A1	$\text { Allow } I=\frac{6}{(6.8+1.4+1.1) \times 10^{3}}=0.00065$ Allow 0.7 Examiner's Comments Candidates who use the potential divider equation invariably gained the correct answer of 0.71 V . Alternatively, some candidates correctly determined the current and then determined the voltmeter reading.
		ii	As temperature of thermistor increases, resistance of thermistor decreases Total resistance of circuit decreases or current increases Greater proportion of p.d. across fixed resistor or p.d. across fixed resistor increase Reading on the voltmeter will increase	B1 B1 M1 M1 A1	Examiner's Comments Candidates were expected to explain how the voltmeter reading would change as the temperature of the thermistor increased. Good answers used a step-by-step approach. Candidates needed to explain how the potential difference of across the fixed resistor would change. It was essential that clearly defined terms were used - often candidates referred to V_{1}, R_{2}, or p.d. and resistance without indicating explicitly the meaning of V_{1}, R_{2}, or explaining which p.d. or resistance was being referred to.
			Total	6	
22	a	i	$\begin{aligned} & \frac{1}{R}=\frac{1}{60}+\frac{1}{60} \text { or } \frac{1}{R}=\frac{1}{60}+\frac{1}{60}+\frac{1}{60} \text { or } R=\frac{60}{n} \text { or } R=\frac{60 \times 60}{60+60} \\ & 30 \Omega+20 \Omega=50 \Omega \end{aligned}$	M1 A1	Examiner's Comments This question was generally answered well although, a number of candidates did not take due care when writing the mathematical expressions. Exemplar 6 4 (a) Fig, 4 shows a circuit with five identical 60Ω resistors. The battery has electromotive force The candidate's response is logically

				structured showing the effective resistance of the two combinations of resistors and then clearly showing the adding of the two effective resistances together. This answer gained both marks.
	ii	$\frac{30}{50} \times 9 \text { or } I=\frac{9}{50}=0.18 \mathrm{~A}$ $5.4 \mathrm{~V}$	C1 A1	Examiner's Comments For this question, many candidates incorrectly stated that the potential difference was 4.5 V . Other candidates tried determining the current but did not make clear their working. The simplest solution was to use the potential divider relationship.
	iii	$\begin{aligned} & \left(I=\frac{5.4}{60}=\right) 0.090 \mathrm{~A} \\ & (0.09 \times 120=) 11 \end{aligned}$ C or coulomb	C1 A1 B1	Allow ECF from (ii) Allow 10.8 Note 0.18 C scores two marks provided 0.09 A is seen Note 21.6 C scores one mark (for the correct unit) Examiner's Comments The majority of the candidates gained a mark for the unit of charge on this question. A common incorrect answer was 21.6 C where candidates had used the total current in the circuit rather than the current of 0.09 A in resistor Y . Some candidates did not change the time in minutes to a time in seconds.
	iv	$(11 \times 5.4$ or $0.09 \times 5.4 \times 120)=59$ or $58(\mathrm{~J})$	A1	Note 58(.3) if 10.8 C used Allow ECF from (ii) and/or (iii) Not 60 Examiner's Comments Candidates who multiplied the charge by the potential difference easily gained the mark in this question. Other candidates who used different methods often made mistakes.
b		$I=n A v e \text { or } v a l$ larger current through \mathbf{Y} than \mathbf{Z} ORA	B1 B1	Allow any correct rearrangement of $I=n A v e$ Allow $I_{Y}=0.090 \mathrm{~A}$ and $I_{Z}=0.060 \mathrm{~A} \mathrm{OR} / Y /$ $I_{z}=1.5$ ORA

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& drift velocity in \(\mathbf{Y}\) is 1.5 times drift velocity in \(\mathbf{Z}\) ORA \& B1 \& \begin{tabular}{l}
Examiner's Comments \\
In this question, many candidates correctly quoted the equation and stated that the mean drift velocity was directly proportional to the current. The majority of the candidates realised that there was a larger current in resistor \(Y\) than resistor \(Z\); however, few candidates realised that the current was 1.5 times larger and therefore the mean drift velocity was 1.5 times larger.
\end{tabular} \\
\hline \& \& Total \& 11 \& \\
\hline 23 \& i \& \begin{tabular}{l}
\[
V q=1 / 2 m v^{2} \text { and } \quad \lambda=\frac{h}{m v}
\] \\
Clear algebra leading to \(\lambda^{2}=\frac{h^{2}}{2 m q} \times \frac{1}{V}\)
\end{tabular} \& M1 \& \begin{tabular}{l}
Allow \(p\) for \(m v\) \\
Allow \(e\) for \(q\) in (b)(i) - this is to be treated as a 'slip'
\end{tabular} \\
\hline \& ii \& \begin{tabular}{l}
(\% uncertainty in \(\lambda^{2}=\)) \(10 \%\) \\
1 (\% uncertainty in \(\lambda=\)) \(5 \%\) \\
Straight line of best fit passes through all error \\
2 bars \\
gradient \(=1.0\left(\times 10^{-22}\right)\) \\
\(\frac{h^{2}}{2 m q}=\) gradient \\
3 \\
\(\frac{\left(6.63 \times 10^{-34}\right)^{2}}{2 \times m \times 3.2 \times 10^{-19}}=\) gradient \\
\(m=6.9 \times 10^{-27}(\mathrm{~kg})\) (hence about \(10^{-26} \mathrm{~kg}\))
\end{tabular} \& C1
A1
B1
B1

C1

C1
C1

C1 \& | Note 10 (\%) on answer line will score the C1 mark |
| :--- |
| Ignore POT for this mark; Allow ± 0.20 (\times 10^{-22}) |
| Possible ECF for incorrect value of gradient |
| Note check for AE (condone rounding error here) and answer must be about $10^{-26}(\mathrm{~kg})$ for any incorrect gradient value for this A1 mark |
| Special case: $1.37 \times 10^{-26} \mathrm{~kg}$ scores 3 |
| marks for $q=1.6 \times 10^{-19} \mathrm{C}$ because answer is about $10^{-26} \mathrm{~kg}$ |

\hline \& \& Total \& 9 \&

\hline
\end{tabular}

